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SYNOPSIS

Stress relaxation after rapid extensional strain was measured to obtain

the extensional relaxation modulus. The time dependence of the relaxation

modulus was found to be the same in extension as in shear, given by the

relaxation modulus of linear viscoelasticity. The strain dependence was

markedly different than in shear. Separation of time and strain dependence

into a product of two functions is suggested by the experimental results.

This is a strong support for the 'separability assumption" and simplifies the

formulation of rheological constitutive equations. A polymer with linear

macromolecules (PS4 exhibited much stronger strain dependence than a polymer

with long chain branched macromolecules 4LDPE). The parameters of an integral

constitutive equation were determined in rapid strain experiments and the

constitutive equation was tested experimentally with stress growth at start-up

of equibiaxial extension. Equibiaxial extensional flow was generated with a

Rheometrics RDS-LA, using the lubricated squeezing technique. - ......
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INTRODUCTION

Fiaxial extensional flows occur in several polymer processing operations

such as film blowing, blow molding and vacuum forming. The rheological

behavior of viscoelastic polymers in biaxial extension is of prime importance

in understanding and improving such processes. Biaxal extensional data would

also be useful as guidance during the development of rheological constitutive

equations. Research in extensional rheology has occurred primarily in the

last two decades and several reviews appear in the literature (Cogswell, 1972;

Dealy, 1978; Petrie, 1979). To date four methods have been used to study

biaxial extension: sheet inflation. axisymmetric stagnation flow, sheet

stretching, and lubricated squeezing.

Sheet inflation involves the extension of a thin polymer sheet by means

of an inert gas (Denson and Gallo, 1971; Joye et al., 1972 and 1973; Bailey,

1974; Maerker and Schowalter, 1974; DeVries et al., 1977) or a silicon oil

(Denson and Hylton, 1980; Rhi-Sausi and Dealy, 1981). A hemi-spherical bubble

was inflated by applying gas at different pressure on both sides of a sheet.

The deformation was measured optically and the stress in the sheet was

dctermined from the local bubble curvature and the pressure difference. Both

stress and strain rate were chanting with time. The use of an incorpressible

silicon oil as the inflating medium and a control system for the inflation

rate has enabled constant rate experiments to be performed using this

technique. Controlled biaxial extension, however, is restricted to the area

near the pole of the bubble.

Constant birxial strain rates werc achieved in a axisymrctric stagnation

flow device (van Aken and Janeschitz-lriegl, 19S0 and 191) in which two
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impinging fluid streams are guided by lubricated trumpet shaped walls (Winter

et al., 1979). Flow birefringence was measured in the plane of symmetry and

the force which tended to separate the trumpets was measured simultaneously.

Polystyrene melts were investigated at constant strain rates.

A sheet stretching device consisting of eight rotary clamps has also

been used to obtain biaxial extensional data (Stephenson and Meissner, 1980;

Meissner et al., 1981). The biaxial deformation with this device is

homogeneous throughout the sample. Constant strain rate data for

polyisobutylene at room temperature have been reported. High temperatures,

as needed for polymer melt rheology, will be difficult to obtain and to

control due to the bulky design of the rheometer.

These techniques require very sophisticated equipment, large samples.

careful sample preparation, and are limited to certain temperature ranges.

The experiments are also limited to constant stress and/or constant strain

rates.

Recently, the lubricated squeezing technique has been developed to

generate equibiaxial extensional flow (Chatraci et al., 1981; Frank, 1983). A

small sample of viscous material is compressed between two lubricated parallel

disks as shown in Figure 1. This technique has the advantages of simple

geometry, small sample size, fast experiments, and a broad range of

temperature control. Another important advantage and the main focus of this

study is the ability to perform step strain in equibiaxial extension

(Papanastasiou et al., 1983) in addition to constant stress and constant

strain rate experiments.
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Figure 1 Sketch of lubricated squeezing geometry.



KINEMATICS OF EQUIBIAXIAL EXTENSION

Equibiaxial extension is a special case of axisymmetric extension which

is defined by a velocity field

a2 3

The components are written in principal coordinates with the 1-axis being the

symmetry axis of the flow. The density is assumed to be constant. The

axisymmetric extension rate

ia =l(t) = 8Vllx 1  (2)

and extensional strain

8a a 1 (t"t) j 1 (to) dto (3)

are positive for uniaxial extension and negative for equibiaxial extension.

The Finger strain tensor of axisymmetric extension has the components

(t't 0 exp(-r a 0 (4).• a
0 exp(-s a

The invariants of C-1 (t'.t) are
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11 = trace (C- 1 ) = exp(2ca) + 2 exp(-e a )  (5).

12 = (1I2 C-:c- 11/2 = exp(-2 a) + 2 exp(ea) (6).

131 ; (p = const) (7).

The equibiaxial extension (axisymmetric compression) data are presented

in terms of the biaxial extensional strain
i

Eb I es2 (t
'It) = -ea/2 (8).

One can see from Eqs. (4). (5). (6) and (8) that the first invariant of

axisymmetric extension (uniaxial extension) is equal to the second invariant

of axisymmetric compression (equibiaxial extension) and the second invariant

of axisymmetric extension is equal to the first invariant of axisymmetric

compression when the invarientS are functions of a negative cat

Ye~ a ) = I2(-Z a )  (9)

2(ca ) = I1(-e a )  (10).

These strain invariants are used to describe the strain dependence of the

stress in transient experiments. One of the most informative of these

experiments is the step strain experiment.



STEP STRAIN IN SHEAR AND EQUIBIAXIAL EXTENSION

The step strain experiment is a direct means of measuring the strain

dependent rheology of polymeric liquids. In the experiment, a test sample is

placed into the rheometer and the system is kept at rest until the sample is

completely relaxed to the stressfree state. At time t=O, a finite strain is

'instantaneously' applied and held constant thereafter. The resulting stress

is measured as it relaxes with time. The analysis of step strain data is

especially easy since only two states of strain are involved, assuming that

the finite rise time of the strain has negligible influence. The result of

the measurement is the time and strain dependent relaxation modulus.

For step shear, the relaxation modulus is commonly defined as

G (t) = (tY) (11)
s Y21

with shear stress, z2 1 , and shear strain, Y2 1 , described in a shear coordinate

system. For step axisymmetric extension, the relaxation modulus may be

defined as

-1-a22(te a ) 011-a22
G (te ) = (12).
e a -1 -1 2c -C

11 22 e e

If the strain is a compression (equibiaxial extension) then the extensional

relaxation modulus can be written in terms of the equibiaxial extensional

strain as defined in Eq. (8):



TABLE I

Discrete relaxation time spectra of LDPE and PS samples.

LDPE PS

To - 150 0C TO - 1800C

ES] (Pal (](Pal

5.913 x 101 3.776 x 101 5.152 x 101 7.763 x 101

1.817 x 101 3.710 x 102 8.669 x 100 1.338 x 103

3.680 x 100 1.952 x 103 5.135 x 100 9.275 x 102

6.606 1 10-1 1.085 x 104 1.018 x 100 1.762 x 104

1.073 x 10
-1 2.806 x 104 1.107 x 10 - 1  5.004 x 104

2.060 z 10-2 6.040 x 104 1.06S 1 10 -2 6.978 x 10

3.026 x 10-3 1.371 x 105 9.927 x 10 - 4  1.009 x 105

3.381 x 10
4  3.027 x 10 5.21 x 10

- 5  5.558 x 10

TABLE II

Parameters for approximation of measured strain function.

LDPE PS
Approximation Function Parameters 1500C 1800C

h(y) = f ezp(-nly) + f .67 .88
(1-f) exp(-n 2 y) n, .304 .377

n2  .070 .073

h(y) =  1 a .172 .302

l+a* b  b 1.39 1.57

pI

II



G ( a1 1- 22 (13).
t b )  4a b 2eb

e -e

In the limit of small strain, the extensional relaxation modulus becomes equal

to the relaxation modulus of linear viscoelasticity

I is (F22 -CF1 1  0(t0G (te b ) 6= G(t) (14).eb -0 6 b

The relaxation modulus of linear viscoelasticity can be describr by a

spectrum of relaxation times, ki, and associated relaxation mc 'i. gi.

N
g(t) gi exp(-t/) (15).

i=1

This relation allows one to check the novel extensional flow experiments

against well known small strain shear data. The relaxation modulus of linear

viscoelasticity can, of course, be obtained from several different experiments

(Bird. Armstrong, and Hassager, 1977). The relaxation time spectra of the

polymers in this study appear in Table I (Soskey and Winter, 1984).



SEPARABILITY OF TIME AND STRAIN DEPENDENCE

Many authors have suggested that the time and strain dependence of the

relaxation modulus can be expressed as a product of two independent functions,

the time dependent relaxation modulus of linear viscoelasticity, 9(t), and a

strain function, h. The separability assumption has been based on

phenomenological arguments (Tanner and Williams, 1970; Yen and McIntire, 1974;

Wagner, 1976; Osaki, 1976) and on a molecular theory (Doi and Edwards, 1978

and 1979). Shear data support this assumption for molten polymers (Laun,

1978; Lin, 1984; Soskey and Winter, 1984). However, no step strain data were

*available for testing the separability assumption in extensional flow. Wagner

(1978) calculated an uniaxial strain function from stress growth experiments

at constant rate, using a particular constitutive equation and data from the

literature. The uniaxial strain function was found to depend on the rate of

extension as well.

With lubricated squeezing, a method is now available to perform step

strain experiments in equibiaxial extension. If the separability assumption

holds, the extensional relaxation modulus can be decomposed

0

G (t,e ) = G(t) h (E ) , h 1 (16)
e a e a e

in the same manner as the shear relaxation modulus

0
G (t,y) = G(t) h (y) , h . 1 (17).

We therefore propose, as a test of the separability assumption, that the

extensional relaxation modulus and the shear relaxation modulus have the same

shape, i.e. the ratio of the moduli is independent of time. At small strain,

both strain functions, he and hso adopt a value of 1 and the relaxation
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modulus in shear and extension is equal. This will be discussed further along

with the experimental results.

The strain functions can be combined by expressing them in terms of a

generalized strain invariant I, (Wagner, 1979; Wagner and Stephenson, 1979)

I = al+ (l-a)12 0 a 1 (18)

where a is a constant. For axisymmetric extension (positive ea), this strain

invariant becomes

i ad = all(ea) + ('-a) 12(e a )

= a[exp(2ea) + 2 exp(-ea)] + (l-a) texp(-2a ) + 2 ezp(ea)] (19).

while for equibiaxial extension (negative aa), I, and 12 become functions of a

negative axisymmetric strain. The invariant I can be rewritten in terms of eb

as defined in Eq. (8).

Me b ) = all(eb) + (1-a) 12(eb)

- a [ezp(-4Eb) + 2 exp(2eb)) + (1-a)[exp(45b) + 2 exp(-2eb)] (20).

In shear flows, I is independent of a since I1 (y) and 12 (y) are indentical

I(1) = I1 (y) 12(7) = Y2 + 3 (21).

Possible generalized strain functions can then be written as a sigmoidal

function (Soskey and Winter, 1984)

hi) = (1 + a(I-3)b/2)-i (22)

or as the sum of two exponential functions (Osaki, 1976)

hI) = f exp(-nl f1- ) + (1-f) exp (-n2 1 ) (23).

The parameter a in the strain invariant, Eq. (18), can be determined from

extensional step strain experiments. Values of a, b, n1 , n2 and f were

determined from shear step strain experiments (Soskey and Winter, 1984) and

appear in Table II. In comparison, Papanastasiou et. al. (1983) suggested a

sigmoidal strain function. Eq.(22 with b=2 for all material.



EXPERIMENTAL

Apparatus and Materials

A linear rheometer (Rheometrics RDS-LA) was used for the experiments.

The rheometer has a linear motor mountea for vertical displacement on which

various test fixtures can be attached. Disks of 25 mm and 10 mm diameter were

used. The test fixtures are surrounded by an air-convection oven and

temperatures up to 250°C are easily obtainable. The temperature can be

controlled to ±0.51. A transducer with selectable ranges of .1 Nm, .2 Nm and

.5 Nm was used to measure the axial forces. A microprocessor controls the

strain signal to the motor. A data handling system stores the measurement of

the resulting strain and force for subsequent analysis.

A linear polymer, PS, (Dow Styron 666, polystyrene at 1800 C) and a

branched polymer, LDPE, (duPont Alathon 20, low density polyethylene at 150 0C)

were studied. Samples for the lubricated squeezing experiments were melt

pressed into disks of 25.4 mm diameter and approximately 2.5 mm thick at 190 0C

for four minutes then quenched in water. The polystyrene was melt pressed

under vacuum and slowly cooled to below 1000C before removal from the press to

eliminate bubble formation in the sample upon reheating. Smaller diameter

samples were cut from these pressed disks.

Silicone oils (General Electric, 'Viscasil* silicones) were used as the

lubricating medium. The choice of a suitable lubricant is essential in

generating a homogeneous extensional deformation. The ratio of zero shear

viscosities between sample and lubricant was the criterium for selecting a

suitable lubricant. A ratio of 500 to 1000 seems to give the best lubrication

(Tovstiga, 1983). Polymer and lubricant viscosities appear in Figure 2.
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Figure 2 Zero shear viscosities of sanwples and lubricants.



Viscasil 600K and Viscasil 300K were used as lubricants for PS and LDPE

respectively.

Experimental Procedure

A sketch of the lubricated squeezing test geometry is shown in Figure 1.

A disk-shaped sample of polymer is placed between two lubricated parallel

disks. Assuming that the material is incompressible and that the deformation

is homogeneous (i.e., the shear deformation occurs only in the lubricant layer

and the polymer melt undergoes only equibiaxial extensional flow), the

axisymmetric strain rate and strain are

1 dH

9a Hdt (24)

Ca = ln(H/Ho ) (25)

where HoH are the initial and instantaneous sample thicknesses respectively.

The equibiaxial strain, eb , is obtained from Eq. (8). The normal stress

difference is obtained from the relations

Orr - Uzz = F/(nr 2 (t)) for r R (partial filling) (26),

Orr - Ozz = F/niR2  for r2R (27)

where F is the squeezing force on the disks, r is the instantaneous sample

radius and R is the radius of the disks.

The instantaneous sample radius is determined assuming constant

density:

r = r IH-/H(t) r r(t = 0) (28).
0 a 1 0

The actual experiments proceeded as follows. The parallel disk fixtures
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were heated to the desired temperature, the oven was opened and a layer of

lubricant approximately .06 m thick was applied to the top and bottom disks

by means of a wooden spatula. The lubricant layer has about 1% of the sample

thickness. The sample thickness can therefore be approximated by the

separation of the disks. The polymer sample (consisting of two preformed

disks, stacked to give a total initial sample thickness, Ho ~ 5mm) was

centered on the bottom disk and the top disk was lowered until it just

contacted the sample. The sample was heated to the desired temperature and

held there for at least eight minutes before the test was started to ensure

complete melting and relaxation of any residual stresses present due to the

sample preparation. The initial disk separation, Ho, was measured and the

test begun. The resulting transient axial force was then recorded.

Two types of experiments were performed: 1) stress relaxation after a

step in equibiaxial extensional strain and 2) stress growth at constant

equibiaxial extension rate.

Stress relaxation experiments after a step in equibiaxial extensional

strain were performed up to eb = 2.3. The 25 mm disks were used for b < 0.47

and the 10 mm disks for 0.35 ( eb < 2.30. The equibiaxial extensional strain

was measured by removing the deformed sample after the stress had relaxed to

below the accuracy of the force transducer (after approximately 200 s), wiping

any remaining lubricant from the disk surfaces, bringing the disks into

contact and measuring the change in disk displacement after the temperature

re-equilibrated to the test value.

For the step strain experiment, a rapid rise time is desired in order to

avoid corrections to the resultant stress relaxation (Laun, 1978). The motor



response for a step in strain was extremely fast as seen in Figure 3. Rise

times of less than 20 as were obtained for even the highest strain Of ab

2.3. Rise times of this magnitude do not significantly affect the stress

response at t .4 s. These rise times are considerably faster than those

obtained in shear step strain experiments of the same polymers (Soskey and

Winter, 1984).

The stress response after various steps in strain is shown in Figure

4. The horizontal regions at short times are due to the force transducer

range being exceeded at the start of the experiments. Even though the

transducer range was exceeded during some tests, there was not an appreciable

offset at long times. However, at long times and small strains, some scatter

in the data occurs due to the inaccuracy of the transducer at force levels

less than 5 x 10-4 Nm. This scatter is more pronounced for the LDPE than for

the PS. For 'b>1.6, the effectiveness of the lubrication is seen to

diminish as evidenced by the very high force levels at short times and abrupt

dips in the force at longer times. Also any slight disk movements at very

high strains, (H -H)IH >.96, showed up as instabilities in the force0 0

measurements. Therefore, due to the limits of the transucer range and the

loss of effective lubrication, stress relaxation data over two time decades,

*0.1 .1 t 10 s, and for strains ab . 1.5 were considered reliable.

Stress growth at constant equibiaxial strain rate experiments were also

performed. In order to generate a constant rate in the lubricated squeezing

experiment, the disks must approach each other in a logarithmic manner based

on the initial separation of the disks. see Eqs. (24) and (25). A substantial

discrepancy was found between the true strain and the required strain for any
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Figure 3 Measured plate separation as a function of time for step strain
experiment on RDS-LA.
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particular prescribed strain rate. The true strain is obtained

from the actual disk separation, ln(H/H0 ), while the prescribed strain is

obtained from the prescribed strain rate at a particular time, ibt , see Figure

5. This problem in the motor displacement response prohibits the attainment

of a constant strain rate without some modification of the experimental

procedure. This deviation from constant strain rate is especially severe at

higher strains and is due to the incorrect programming of the motor

displacement based on the initial disk separation, Ho.  Fortunately, this

error can be resolved and a constant strain rate obtained by inputting a

corrected sample height for the motor control according to the following

relation:

Ho, corr= .9467 H o  (29).

This correction method allows a constant strain rate to be generated and is

the same for all strain rates.

Constant strain rate experiments were performed for .01 ib 0.5 s- 1 .

A changing area technique similar to the one described by Frank (1983) was

used. The technique involves using a sample that has an initial diameter less

than the disk diameter and taking into account the changing area of the sample

on the disk surface when calculating the stress from the force measurements as

the experiment progresses. Figure 6 shows the transient equibiaxial

extensional viscosity

[o-o ](t)

b (t.i) rr zz (30)
b

measured for LDPE and PS using this technique.
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RESULTS AND DISCUSSION OF STEP STRAIN EXPERIMENTS

The strain and time dependent extensional relaxation modulus, Eq. (13).

was determined from the transient stress relaxation data of Figure 4. The

results appear in Figure 7 where only the data at a few strains are presented

for clarity. The solid line in Figure 7 is the relaxation modulus of linear

viscoelasticity, Eq. (15), as calculated from the relaxation spectrum of Table

I. The data clearly show that, indeed, the extensional relaxation modulus is

equal to the linear viscoelastic relaxation modulus as the equibiaxial strain

approaches zero.

The lubrication is effective in removing the shear stress at the top and

bottom surfaces of the polymer sample as evidenced by the shape of the

relaxation modulus curves. This is argued with the following observations:

The measured extensional relaxation moduli show distinctively different shapes

for both the LDPE and PS. yet the shapes are identical to their respective

shear relaxation moduli obtained from shear step strain experiments and from

linear viscoelasticity theory. One would expect different shapes between the

shear and extensional relaxation modulus curves if the lubrication was poor in

the squeezing experiment. The data, up to moderate strains, indicate that a

true material response was measured in the equibiaxial extensional step strain

experiment and equibiaxial extension was indeed achieved through effective

lubrication. However, some loss in effectiveness of lubrication was seen at

high strains, ab > 1.6 (very small final disk separations), where the shape of

1

-- . - - - -- - S
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the stress relaxation curves change significantly as seen in Figure 4. The

curves exhibit unexpectedly high stress levels at short times along with

several small dips in the curves at long times. These features are attributed

to the loss of effective lubrication as the sample thickness is reduced below

4% of its initial value. The small dips are caused by small movements of the

linear drive system, i.e. by small changes in the disk separation, H(t).

The extensional modulus curves not only have the same shape but decrease

as the strain increases. This suggests the separability of the extensional

relaxation modulus into a product of two independent functions of time and

strain, Eq. (16). The strain function, he, for equibiaxial extension has been

obtained by shifting the modulus data of Figure 7 vertically upwards until

they coincide with the linear viscoelastic modulus. The resultant values for

the extensional strain function vs. strain appear in Figure 8 and are seen to

monotonically decrease as the equibiaxial strain increases. Due to the non-

parallelism of the relaxation modulus curves at high strains, accurate values

for the extensional strain function for equibiaxial extension could not be

obtained beyond eb = 1.5 or ea = -3.

As already observed with the shear strain function h s (Soskey and

Winter, 1984), the extensional strain function decreases more rapidly for the

polymer with linear macromolecules (PS) than for the polymer with branched

macromolecules (LDPE) although the difference between the two is not as great

as for the shear strain function.

A generalized strain function that describes both shear and extension

Eq. (18), was used to analyze the extensional strain function for equibiaxial

extension. The prediction of the extensional strain function using the
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proposed generalized strain functions, Eqs. (22) and (23), along with the

generalized strain invariant for equibiaxial extension. Eq. (20), and the

parameters of Table II has also been plotted in Figure 8. Data from the shear

step strain experiments predict an extensional strain function for equibiaxial

extension between the curves a=O and a=l. The measured extensional strain

function for equibiaxial extension, he(cbS, although lying slightly above, is

described best by the curve with a=l. Just as with the shear strain function,

the sigmoidal form of the extensional strain function, Eq. (22), describes the

small strain data better than the form having a sum of two exponentials, Eq.

(23).

The extensional strain function for uniaxial extension of a LDPE melt

was found to be described best by a z 0 for a generalized strain invariant

given by Eq. (19), he(Iea) (Wagner, 1979). Because of the relation between

the strain invariants for axisymmetric extension and axisymmetric compression

as discussed in Eqs. (9) and (10), the extensional strain function for

equibiaxial extension, h(I-8 a)) with a=l is identical to the extensional

strain function for uniaxial extension, he(I(sa)), with a=0. This identity is

easily seen when one plots the extensional strain function for equibiaxial

extension in terms of the axisymmetric strain along with the extensional

strain function for uniaxial extension as shown in Figure 9.

This leads to the conclusion that the strain function as given in Eqs.

(22) or (23) can very well be used to describe just shear and uniaxial

extension or it can be used to describe just shear and equibiaxial extension.

However, the same strain function cannot describe all three modes. Further

investigations are needed for finding a suitable form of the strain function.
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This same problem has occured to Wagner and Stephenson (1979) for

describing the elastic recoil behavior after uniaxial extension. The

kinematics of the recoil is that of equibiaxial extension. A best fit of the

recoil data was found with u-l while the extefnsional data was described with

cmO. They proposed to fit the data with a strain function

I e~(ea)) with amO

he(Ieaj)) with with (31)
hhee-(a)) with a-1

making use of the symmetry between uniaxial extension an4 equibiaxial

extension. No biaxial extension data was available for their LDPE sample.

RESULTS AND DISCUSSION OF STRESS GROWTH EXPERINENTS

The results of the stress growth during start-up of flow at constant

equibiaxial extension rate, ib, were analyzed by applying a single integral

constitutive equation based on the Lodge rubberlIke-liquid equation (Lodge,

1964; Wagner. 1976; Laun, 1978)

2(t) = -P(t)1 + p(t 'hIC~'t)dt' (32)

where a(t) is the stress tensor at instant of observation, p is an isotropic

stress contribution, p is the linear viscoelastic memory function, h is the

strain function, and C- 1 is the relative Finger strain tensor between the

states t and t'. The memory function is chosen in discrete form

p(t-t') "i exp(- -t) (33).

i=1i

For equiblaxial extension at constant volume, the relative Finger strain

tensor is given in Eq. (4). The start-up experiment with constant equibiaxial

extension rate *b is defined by



ibs  for s ( t
8b(tt) =fr (34)L b.t for s t

where s = t-t'. A normal stress difference can be determined from the memory

integral constitutive equation, Eq. (32), and the kinematics of equibiaxial

extension as prescribed with Eq. (34):

a2-1 (t) = J p(s)h((s)) [ e ebsIds

r022t 11bt 1 (35

+ 8 (t)h(I(t))Le-4bt 2'bt]  (35)

The transient equibiaxial extensional viscosity, Eq. (30), was then

calculated by numerical integration of Eq. (35) for different extension rates

and forms of the strain function.

The measured equibiaxial viscosity appears in Figure 6 where the solid

lines are the predictions of Eq. (32) in the linear viscoelastic limit using

the material parameters of Table I: The lower solid line represents the

transient shear viscosity qs(j=O.0001 s-1) and the upper solid line is

b(sb=0.0001 s-l). It can be shown from linear viscoelastic theory that the

two transient viscosities are related by a factor of six, qb = 6As. At low

extensional strains and for all the measured extension rates, the measured

equibiaxial viscosity then becomes slightly less than the linear viscoelastic

limit. At eb Z 0.85, the measured equibiaxial viscosity begins to rise above

the linear viscoelastic limit and continues to rise to very high values at

large strains. The strain at which this deviation occurs increases slightly

as the extension rate increases. This rise in stress at large strain may be

attributed to the loss of effective lubrication and is seen for several

different polymer melts. Two other lubricants having shear viscosities a

decade higher and lower than the Viscasil 300K and 600K were used and the



measured equibiaxial vioscosity at low strains was considerably higher than

those reported in Figure 6. but approached the same measured viscosity at high

strains indicating that, regardless of the lubricant, the effectivenss of the

lubrication may be lost and the response at high strains is due to the extra

force needed to shear the polymer sample.

This possible loss of effective lubrication in the constant rate

experiment occurs at a slighly lower strain than in the step strain

experiment. It seems that at these relatively low extension rates the

lubricant has a chance to squeeze out at lower strains, whereas for the step

strain experiment, the extension occurs so fast (very short rise times) that

the lubricant does not have enough time to be squeezed out and therefore the

effectiveness of the lubrication remains until higher strains.

This rise in biaxial viscosity at large strains has also been seen by

others who have not used the lubricated squeezing technique. Both Stephenson

and Meissner (1980) with the sheet stretching device and Rhi-Sausi and Dealy

(1981) with a sheet inflation biaxial rheometer, where lubrication effects are

absent, report biaxial viscosities which increase at high strains. However,

other experimental difficulties at high strains makes it difficult to analyse

the in data. Better methods of obtaining high strain data are needed.

Even though experimental data at large strains are difficult to obtain

it is instructive to look at the predictions of the equibiaxial viscosity for

the various forms of the strain function obtained from the step strain

experiments. The predictions of the equibiaxial viscosity appear in Figure 10

for ib = 0.1 s- 1 .  The three curves marked L, S and E correspond to the

following choice of h(I):

. . . .. . il l - - I - i - - 11 n - " I I . . . . . . . .. . . . . . . . -
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Figure 10 Predictions of the transient equibiaxial extensional viscosity

according to Eq. (36) for various forms of the strain function.
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S - h(I) given by Eqs. (20) and (22) with a - I

E - h(I) given by Eqs. (20) and (23) with a - 1

a) LDPE, T - 150 0 C

b) PS. T - 180°C



L - Lodge rubberlike-liquid constitutive equation; h(I) = 1.

S - Sigmoidal form of strain function; h(I) as given by Eqs. (22) and

(20) with al.

E - Exponential form of strain function; h(I) as given by Eqs. (23) and

(20) with an1.

The prediction of 1b(t) from the Lodge rubberlike-liquid equation is

seen to follow the linear viscoelastic limit at small strains then rise

sharply at eb X 1 and continue to rise to an infinite viscosity similar to the

uniaxial extensional viscosity (Lodge, 1964). The prediction with the

sigmoidal form of h(I) is seen to follow the linear viscoelastic limit at

small strains, level off to a viscosity below the linear viscoelastic limit at

intermediate strains and then rise in a dramatic manner to an infinite

viscosity at large strains. The form of h() containing the sum of two

exponential functions predicts an equibiaxial viscosity similar to the

sigmoidal form up to intermediate strains as would be expected from Figure 8

where the functions are nearly identical up to ab - 2. However, at eb > 4 the

exponential form of h(I) predicts a constant value of nb that is less than the

linear viscoelastic limit. This feature occurs because the exponential form

of h(I) decreases much more rapidly at large strains than the sigmoidal form

and is able to cancel out the exponentially increasing part of Eq. (35) due to

the equibiaxial strain. The measured equibiaxial viscosity is described well

by the memory integral constitutive equation up to intermediate strains.

CONCLUSIONS

A step strain experiment using the lubricated squeezing technique has

provided a means of directly measuring the extensional strain function of



polymer melts in equibiaxial extension. The maximum strain with sufficient

lubrication was found to be about eb-l.. The novel extensional data support

the separability of the extensional relaxation modulus into time and strain

dependent functions. The transient equibiaxial viscosity measured at constant

extension rates with the lubricated squeezing technique agrees well at low and

intermediate strains with the predictions of a memory integral constitutive

equation using the extensional strain function determined from the step strain

experiments. Improved experimental methods are required to accurately

determine the rheological behavior of polymer melts at high equibiaxial

extensional strains.
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